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OPTIMAL CO O0 OROCESSEt

Wendell H. Fleming

1. Introduction. The purpose of this article is to give an

overview of some recent developments in optimal stochastic control

theory. The field has expanded a great deal during the last 20

years. It is not possible in this overview to go deeply into any

topic, and a number of interesting topics have been omitted entirely.

The list of References includes several books, conference proceedings

and survey articles.

The development of stochastic control theory has depended on

parallel advances in the theory of stochastic processes and on certain

topics in partial differential equations. On the probabilistic side

one can mention decomposition and representation theorems for semi-

martingales, formulas for absolutely continuous change of probability

measure (e.g. the Girsanov formula), and the study of Ito-sense

stochastic differential equations with discontinuous coefficients.

It seems fair to say that these developments in stochastic processes

were in turn to an extent influenced by their applications in

stochastic control. For contro11dl Markov diffusion processes, teri

is a direct connection with certain nonlinear partial dtf" tial

equations via the 4namic programing Uation. These oquatm are

of second order, elliptic or parabolic, and possibly. degeafte

SOM
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Stochastic control gives a way to represent their solutions probabil-

istically. There is an unforeseen connection with differential geom-

etry via the Monge-Ampere equation.

Broadly speaking, stochastic control theory deals with models of

systems whose evolution is affected both by certain random influences

and also by certain inputs chosen by a "controller". We are concerned

here only with state-space formulations of control problems in contin-

uous time. Moreover, we consider only markovian control problems in

which the state xt of the process being controlled is Markov provided

the controller follows a Markov control policy. We shall not discuss at

all the extensive engineering literature on input-output formulations

particularly for linear system models, see Rstrom [1].

We shall mainly discuss the case of continuously acting control,

in which at each time t a control ut is applied to the system.

However, in I8 we briefly mention impulsive control problems, in which

control is applied only at discrete time instants. In optimal stochas-

tic control theory the goal is to minimize (or maximize) some criterion

depending on the states xt and controls ut during some finite or

infinite time interval. In §2 we formulate a class of optimal control

problems for Markov processes, with criterion (2.2) to be minimized.

The distinction between problems in which xt is known to the con-

troller, and problems with partial observations is made there. When

xt is known, the dynamic programming method can be used. In principle,

this method leads directly to an optimal Markov control policy, although

it rarely gives the optimal policy explicitly. In 13, both analytical

,, iil lllll.
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and probabilistic approaches are indicated. Associated with dynamic

programming is the Ntsio nonlinear semlgroup (64). In 15 we discuss

methods of approximate solution and special problems. In 16 a logarith-

mic transformation is applied to positive solutions of the backward

equation of a Markov process. There results a controlled Markov process,

leading to connections between stochastic control and such topics as

stochastic mechanics, large deviations and nonlinear filtering. The

case of controlled, partially observed processes is mentioned in 17,

along with adaptive control of Markov processes. Finally in §g we in-

dicate a few of the various difficulties encountered in seeking to im-

plement in engineering applications the mathematically sophisticated

results of the theory, and mention some newer areas of application.

2. Controlled Markov processes. We consider optimal stochastic control

problems of the following kind. We are given metric spaces E, U

called the state space and control space, respectively. For each fixed

uE U there is a linear operator LU which generates a Markov, Feller

process with state space E. The domain of Lu contains, for each

uE U, a set D dense in the space C(E) of bounded uniformly contin-

uous functions on E. The state and control processes xt,ut are

defined on some probability space (a,jrP). The E-valued process xt

is adapted to some increasing family of a-algebras A=cj_, and the

trajectories x are right continuous. The

U-valued process ut is predictable with respect to an increasing

wo
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family of a-algebras Ytc t The a-algebra Y describes in a measure

theoretic way the information available to the controller at time t.

The processes (xtut) are related by the requirement that

(2.1)Mg(t) =g(x)- g(x0) - Jo Lgx)s

is a (i'F,-P) martingale for every gE D. We consider a fixed, finite

time interval 0 < t < T, and the objective to minimize a criterion of

the form of an expectation

(2.2) J E{Jf k(xt~ut)dt + G(xT)}.

Example 1. Controlled finite-state Markov chain, with

E={1,2, ... ,N). In this case 1" is identified with the infinites-

imal matrix (q?~.) of the chain. When the control u is applied,

the jumping rate of x t fosteitoj is qj

n
Example 2. Controlled diffusion process with Z = R

t t
(2.3) xt = X10 4Jf f(xSIus)ds + JOCT(x.u 5 )dwst

with wt a brownian motion (of some dimension d) independent of the

initial state x0. In this case

(24 u I 1 n a2 n
(2.4) L ijxu + ,I fi(x,u)ax

with asuago and D ={ g: ,g, 99 E CORn), isj 0 Is ... ,til.

The diffusion is called nondegenerate if the eigenvalues of a(x,u)



are boandet below by- >. 0.

Further assumptions, which vary froum author to author fa the

literature,* need to be made. To avoid undue complication, t. tedis-

cussion to follow we take a Vompact control _space U, and ttxvq), 0(x)

bounded, uniformly continuous. In (2)fxu)qxu rc maded and

as smooth as necessary. 'The a-algebras OrW~j are right Oeattua

and completed.

If Xt is Y-measurable, then the controller can observe the

state x.~ In this case, one may as well take Yt and known

initial state xo. This is the situation in S's 3-6 to follow, If

(2.1) holds, we call

an admissible system for the control problem with completely observed

states.

A Markov control policy is a Borel measurable function from

[O,Tlx E into U. An admnissible system at is obtained via a Narkov

control policy u if

(2.5) -t u(t,xi).

Given u and x0e Es one would like to know whether a corres-

ponding -admissible system exists, with xta Markov process. Whder

suff iciently strMn restriction this is well kasi., ftr I tp, A

Case of controlled difusion a Lipschitz condtion s u t roul4
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imply the classical Ito conditions. For nondegenerate controlled

diffusions, existence follows from Krylov [8, p.87] for any bounded u.

The Markov property of xt can be obtained under stronger hypotheses.

For instance, for nondegenerate diffusions it holds if in (2.3) a-o'x).

A martingale method for obtaining the Markov property is to show that

the probability distribution PR- of the state trajectory x. isxo0

unique and depends continuously on the initial state x0 [59). In gen-

eral xt  is only a weak-sense solution to (2.3), since neither the

probability space nor the brownian motion wt are given in advance.

However, in the nondegenerate case with a = a(x) a result of

Veretennikov [62] gives a strong solution.

3. Dynamic programming. The dynamic programming approach to the

control problem with completely observed states xt can be described

in a purely formal way, as follows. For initial state x0 E and

admissible system oa, write J = J(T,xo,o in (2.2). Let

(3.1) W(T,xO ) = inf J(T,xo,q).

Formal reasoning indicates that W(T,x) should satisfy the dynamic

programming equation
aw

(3.2) 7 = AW, T > 0,

with initial data W(O,x) - G(x), where
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(3.3) Ag(x) = min[LUg(x) + k(x,u)].
uEU

Formally, an optimal Markov policy u is found by requiring u (t,x)

to minimize LUW(T - t,x) + k(x,u) among all uE U. Instead of the

finite time control problem, control until xt exits a given open set

&cZ can be considered. In that case the dynamic programming equation

becomes the autonomous form of (3.2) in &, with W(x) = G(x) for XE a&.

There are 'also autonomous dynamic programing equations associated with

the infinite time control problem, with discounted cost or average cost

per unit time criteria to be minimized.

In the rigorous mathematical treatment of dynamic programming there

is one easy resultthe so-called Verification Theorem [7, p. 159].

Roughly speaking, it states that if W(T,x) satisfying (3.2) with the

initial data and the associated Markov policy u are both "sufficiently

regular", then u is indeed optimal and W(T,x) is the minimum per-

formance in (3.1). The Verification Theorem is used to obtain explicit

solutions, in those cases where such a solution is known. Much more

difficult are the questions of existence of sufficiently regular W and

u , and there is a large literature dealing with various aspects of them.

One approach is analytical with the stochastic interpretation made after-

ward. In this approach, existence of solutions to the dynamic programming

equation and their regularity properties are studied, using non-probabil-

istic methods. It is then proved that optimal (or at least c-optimal)

Markov control policies exist. A second approach is probabilistic. In

this approach, one starts with the minimum cost function W in (3.1)

- I I . - I I I I i I l' P l
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and develops stochastic counterparts to the dynamic programming conditions

for a minimum. A third approach is to consider an associated nonlinear

semigroup (§4). While this approach leads to fewer technical diffisulties

than either of the other two, it also leads to weaker results.

For controlled diffusions the analytical approach is remarkably well

developed. See Krylov (8], Lions [45]. In the nondegenerate case the

dynamic programming equation in a second order nonlinear partial differ-

ential equation of parabolic type also called a Hamilton-Jacobi-Bellman

equation. In various other formulations, with xt controlled for all

time t > 0 or until exit from an open set 0, the Hamilton-Jacobi-

Bellman equation is elliptic rather than parabolic. Under reasonable

assumptions the problem, the solution S has generalized second deriva-

tives which are locally bounded. In the elliptic case a deeper regular-

ity result of Evans [26][60] gives a classical solution. In the degen-

erate case W is less regular with locally bounded generalized first

derivatives Wx . The dynamic programming equation (3.2), suitably

interpreted in terms of Schwartz distributions, still holds [8J[45].

For the case of controlled Jump Markov processes, results on existence,

uniqueness and regularity of solutions to (3.2) were obtained by

Pragarauskas [52].

A large class of nonlinear elliptic or parabolic equations, satis-

fying approprate convexity conditions, can be represented as Hamilton-

Jacobi-Bellman equations. As Gaveau [35] pointed out, the Monge-Apere

equation has such a representation.
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In the probabilistic approach, the starting point is to rewrite

the dynamic programuing principle in the following martingale form.

Given an admissible system &t let

mt - jtk(x u )ds + W(T - t,xt).

Then mt  is a (U,P) submartingale, and 6Z is optimal if and only

if mt is a 9t,P) martingale. With the aid of the Doob-Meyer decom-

position for submartingales and some martingale representation theorems,

conditions for optimality are obtained. See Bismut [211, Davis [16],

Elliott [253, El Karoul (5]. These conditions are probabilistic coun-

terparts of those expressed analytically by the dynamic programmiing

equation (3.2). With the probabilistic approach difficult questions

of regularity of solutions to (3.2) are avoided. The probabilistic

techniques give results about existence of optimal Markov policies [21],

[5,p. 218]. These methods also give conditions for a minimum for

optimal control under partial observations.

A different kind of arkovian control problem for diffusions, in

which the control acts only on the boundary of a regionOc Rn was

considered by Venues [61].

4. The Nisto nonlinear semigroup. The dynamic programming, prin-

ciple can be restated in another form, in terms of a semigroup of non-

linear operators. In purely formal way, this is done as follows. In

(2.2) we fix k but consider various G. We rewrite the infim" in

(3.1) as W(T,x) - STG(x). The dynamic programing principle is
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formally equivalent to the semigroup property

(4.1) ST+T = ST 0 ST
1 2 1 2

of the family {STI of nonlinear operators. In addition, for

"sufficiently regular" G, one should have

d

(4.2) dr STGITO 0 AG.

This formal procedure was put on a rigorous basis by Nisio [10], who

obtained (ST} as a semigroup on the space C(E) and showed under some

mild additional conditions that (4.2) holds for GE D (notation of 2).

Equations (4.1),(4.2) would imply the dynamic programming equation (3.2)

if we knew that W(T,.) = STG is sufficiently regular (in particular,

if ST  maps D into D.) However, W does not generally have the

desired regularity. In such instances (4.2) is a kind of weaker sub-

stitute for (3.2).

Nisio's treatment is analytical. She obtains ST as the lower

envelope of the family of linear semigroups Si, where for constant

control uc U the generator of Su coincides on D with the operator

Lu + k(.,u). A stochastic treatment of the Nislo semigroup is given in

Bensoussan-Lions [2), and a uniqueness result in case of nondegenerate

diffusions in Nislo [51]. El Karoui, Lepeltier, and Marchal [24] used

another procedure, and obtained a nonlinear semigroup on a larger space

of bounded functions G which are measurable in a suitable sense.



'1 1

5. Explicit and approximate solutions. In a few instances the

dynamic programming equation (3.2) can be solved explicitly. Examples

are the well known stochastic linear regulator and ierton's optimal

portfolio selection problem [7, pp. 160,165]. For other special prob-

lems the solution can be reduced to a free boundary problm. The

boundaries to be determined separate regions where some control con-

straint holds or not. See for example Karatzas-Benes [40].

When a solution cannot be found by special methods, one can seek

an approximate solution to (3.2). One class of approximate methods

involve discretizations of (3.2). Among such methods the algorithm of

Kushner (9] has a natural stochastic control interpretation. The

difference equations associated with the algorithm correspond to the

dynamic programing equation for an approximating controlled Markov

chain. For the special case of controlled one-dimensional diffusions,

Borkar and Variaya [22] used a procedure in which piece-wise-constant

approximating Markov control policies are allowed.

Other results give approximate solutions to (3.2) when the state

process xt is a nearly-deterministic controlled diffusion. In (2.3)

let a - ,'. The solution is sought in the form of an asymptotic

series in . In [27] this is done by expanding the solution Wl(T,x)

in an asymptotic series. The expansion is valid in regions where the

solution WO(T,x) of the corresponding Hamilton-Jacobi equation is

smooth. In [201 Bensoussan obtains an asymptotic expansion, using a

stochastic maximum principle instead of (3.2).

4
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6. A logarithmic transformation. Consider a linear operator of

the form L + V(x), where L is the generator of a Markov process E

with state space z. The initial value problem

(6.1) LU + V(4+

with data *(O,x) O *(x) has a probabilistic solution by a well known

formula of Feynman-Kac type. For positive solutions of (6.1) another

probabilistic representation for *(Tx) can often be found in the

following way. The logarithmic transformation I = -log# changes (1.1)

into the nonlinear equation

(6.2) di H(I) -V(x)

(6.3) H(I) -e L(e

If one can find a control problem of the kind in 12 such that

(6.4) H() a min ,ul + k(x u),r
iiEU

then (6.2) is the dynamic programing equation (3.2). The stochastic

control interpretation of I(T,x) is as the minimum of the criterion

J in (2.2). Thus, in (3.1) we have W - I. For a nondegenerate diffu-

sion obeying the stochastic differential equation

(6.5) dg t - b(9t)dt + a([t)dwt,

a fMarkov control policy u(tx) changes the generator L to V%

corresponding to change of drift from b(x) to u(t,x) in (6.5).

,J'.i,
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In (2.2) one takes

k(xu) (b(x) - u) a 1(x)(b(x) - u).

with a = oc . An appropriate control problem for the case of Ct a

jump markov process is described in [31], and for a general class of

Markov i in Sheu's thesis [581. The change of generator from L

to LMu corresponds to a change of probability measure. It was pointed

out by M. Day that this change of measure results by conditioning with

respect to *(XT). See [31,(4.5)).

In case L - i. corresponding to Ct a brownian motion (6.1) is

the heat equation with a potential term. The stochastic control inter-

pretation of S a -log # is as least average action. Upon rescaling,

taking L - and replacing V by Xlv, the usual least action is

obtained as a "classical mechanical liMit" as ,. 0 [291. The heat

equation with potential is the "imaginary time" analogue of the

Schrdinger equation of quantum mechanics. There is an intriguing

connection between stochastic control and the Schridinger equation,

whose implications are not as yet well understood (361. This work is

in the framework of Nelson's stochastic mechanics. An apparently

different theory of "stochastic mechanics" was developed by Bismut [41.

Holland (391 gave a stochastic control interpretation of the domi-

nant eigenvalue of the Schrdinger equation as minimum men total energy

of a particle in equilibrium. The approach was agin based ewe lgU -

ritlmic transformatien and subsequently led to Shm's tmWmt (S58
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of the Donsker-Varadhan formula for the dominant eigenvalue of the

operator L + V appearing in (6.1).

The Ventsel*- Freidlin theory of large deviations deals with asymp-

totic probabilities of rare events associated with nearly deterministic

Narkov processes. The logarithmic transform gives another approach to

results of this kind. As an illustration we consider the problem of

exit from an open set Dcr during the time interval 0 < t < T. Let

x6 be a Markov process tending to a deterministic limit xt ast t
C -a 0. Let Ic . -v log Px(TC < T), where Tt is the exit time of
xe from 0. Under various assumptions (including a suitable scaling
t00

of ), I tends to a limit IO, where IO(Tx) is the minimum of a

certain "action functional" among curves starting at xE D and leaving

D by time T. In the stochastic control approach Ie(T,x) is the

minimum performance in a corresponding stochastic control problem (281

[31](58]. In this approach a minimum principle is associated with the

large deviation problem for c > 0, not Just in the limit as c . 0.

In [32), the logarithmic transformation was applied to solutions to

the pathwise equation of nonlinear filtering, making a connection

between filtering and stochastic control.

7. Partial observations; adaptive control. The states xt of

a stochastic system often cannot in practice be measured directly, or

perhaps can only be measured with random errors. This has led to an

extensive literature or nonlinear filtering and on optimal control under
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(1.) f h(x5 s S+ t

with M a brovWnianmotiolA inOdepondct. of ,W. -The "nforM0t0o, Ivel-

able to the controller at time t is usually assumed t be 405CEObed

by the a-algebra Xt generated-by observations ys7 for -s t.

However, existence of optimal, controls has been prove oly with a

somewhat wider class of admissible controls than those ad~pted

to this family

Several good survey articles on cowtrolled partially observed

diffusions have recently, appeared. 15161111. Hencep we shall not

*try to sumarize the various results here., In studying partially

observed control problem it is useful to introduce an auxiliwry

Oseparated* control problem.. In the sepah'ted problem the role of

"state" process is take" by a measure-valued stochastic process Ot

1343. The measure ot represents an unnormalized conditional MOMt-
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Adaptive control. In adaptive control the objective is the simul-

taneous control and identification of unknown system parameters. Common

techniques in discrete-tim adaptive control involve sequential techni-

ques, based on maximum likelihood or least squares, for updating esti-

mates of unknown parameters. In the context of adaptive control of

Markov chains see the pioneering work of Mandl [481, also Borkar-

Varaiya (231, Kumar-Lin [411. Another (Bayesian) viewpoint is to treat

adaptive control of Markov processes as a special case of stochastic

control under partial observations. This is done by simply regarding

the unknown prameters as additional (nontime-varying) components of

the system state. From a practical standpoint this approach encounters

w ll known difficulties, in that effective solutions to partially

observed stochastic problems are difficult to obtain. Nevertheless,

special cases in which the problem becomes finite dimensional have

been treated by Hijab [381 and Rishel [541.

8. Impulse control;problems with switching costs. In impulse

control problems the control actions are taken at discrete (random)

time Instance, and each control action leads to an instantaneous change

in the state xt. Typical impulse control problems are those of stock

inventory management, In which a control action is to reorder with

immediate delivery of the order.

The analytic treatment of impulse control was initiated .ad developed

systematically by Bensoussan and Lions 13), with emphasis on the control
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of nondegenerate diffusions. The 4ynamic programing equation is re-

placed by a set of inequalities which take the form of a quasivariptional

inequality. For the case of degenerate diffusions see Menaldi [50J, and

for impulsive control for Markov Feller process see Robin 551156].

Lepeltier-Marchal [431 gave a probabilistic treatment.

Another class of stochastic control problems of recent interest are

those in which control actions are taken at discrete time instants, with

no instantaneous change in xt but with a cost of switching control

actions. Such problems arise in the theory of controlled queues (see

Sheng (571 ) and in control of energy generating systems under uncertain

demand. The analytical treatment again is to reduce the problem to a

quasivartational inequality. See Lenhart-Belbas [42], Liao [44].

9. Applications. Optimal stochastic control theory was initially

motivated by problems of control of physical devices. More recent

influences have come from management science, economics, and information

systems. Until now, the impact on engineering practice of much of the

sophisticated mathematical theory has been small. The stochastic linear

regulator is a standard tool, because the optimal Markov control poli-

cies turn out to be linear in the state x. If the Markov policy is

nonlinear, it is difficult to implement. Moreover, other issues may be

considered in practice more important than optimality of system perform-

ance as predicted by the stochastic control model. The model is gefer-

ally a simplification of nature, through linearizatlons, reductions of

dimensionality, assumptions that noises are white, etc. A cotrol
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which perfoms well (even optimally) according to the model may behave

poorly in a real control system. The question of robustness of controls

with respect to unmodelled system dynamics is of current interest in the

engineering control literature. See for example [631. A different sort

of question is that of stochastic controllability [641.

We conclude by mentioning two novel applications of stochastic con-

trol. One is Arrow's model of exploration consumption, and pricing of

a randomly distributed natural resource. This model was analyzed in

detail by Hagan-Caflisch-Keller [37]. They determined approximately

the free boundary between portions of the state space where new explor-

ation should or should not be undertaken.

Ludwig and associates have applied a stochastic control method to

fishery management problems (47]. The fishery resource is controlled

through the rate at which fish are harvested. This work has an impor-

tant statistical aspect as well as the control aspect, since errors in

measuring unknown parameters in the fishery model can be important.

v . a
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